Discrimination of protein tags on a dsDNA construct using a double nanopore device

0
  • Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34518–524 (2016).

    CAS Google Scholar Article

  • Muthukumar, M. Translocation of polymers. https://doi.org/10.1201/b10901 (2016).

  • Wanunu, M. Nanopores: A Journey to DNA Sequencing. Phys. Life Rev. 9125-158 (2012).

    Article on Google Scholar Ads

  • Palyulin, VV, Ala-Nissila, T. & Metzler, R. Polymer Translocation: The First Two Decades and Recent Diversification. soft material ten9016–9037 (2014).

    ADS CAS Article Google Scholar

  • Farimani, AB, Min, K. & Aluru, NR DNA Base Detection Using Monolayer MoS2. ACS Nano 87914–7922 (2014).

    CAS Google Scholar Article

  • Albrecht, T. Single molecule analysis with solid-state nanopores. Anne. Rev. Anal. Chem. 12371–387 (2019).

    Google Scholar article

  • Chen, K. et al. Ion current-based mapping of short-sequence motifs in single DNA molecules using solid-state nanopores. Nano Lett. 175199-5205 (2017).

    ADS CAS Article Google Scholar

  • Kong, J., Bell, NAW & Keyser, UF Quantification of nanomolar protein concentrations using engineered DNA carriers and solid-state nanopores. Nano Lett. 163557–3562 (2016).

    ADS CAS Article Google Scholar

  • Plesa, C., Ruitenberg, JW, Witteveen, MJ & Dekker, C. Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett. 153153–3158 (2015).

    ADS CAS Article Google Scholar

  • Bell, NAW & Keyser, UF Digitally encoded DNA nanostructures for multiplexed detection of single-molecule proteins with nanopores. Nat. Nanotechnology. 11645–651 (2016).

    ADS CAS Article Google Scholar

  • Chen, K. et al. Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett. 191210-1215 (2018).

    Article on Google Scholar Ads

  • Singer, A., Rapireddy, S., Ly, DH & Meller, A. Electronic barcoding of a viral gene at the single molecule level. Nano Lett. 121722–1728 (2012).

    ADS CAS Article Google Scholar

  • Sze, JYY, Ivanov, AP, Cass, AEG, and Edel, JB Screening for single-molecule multiplexed nanopore proteins in human serum using aptamer-modified DNA carriers. Nat. Common. 8 (2017).

  • Kong, J., Zhu, J., Chen, K. & Keyser, UF Specific biosensing using DNA aptamers and nanopores. Adv. Mater functions. 291807555 (2018).

    Google Scholar article

  • Rand, A. et al. Electronic mapping of a bacterial genome with solid-state double nanopores and single-molecule active control. ACS Nano 165258–5273 (2022).

    CAS Google Scholar Article

  • Raiber, E.-A., Hardisty, R., van Delft, P., and Balasubramanian, S. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1 (2017).

  • Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. Nat. Reverend Genet. 22235-250 (2020).

    Google Scholar article

  • Poud, S. et al. Mechanical trapping of DNA in a double nanopore system. Nano Lett. 168021–8028 (2016).

    ADS CAS Article Google Scholar

  • Choudhary, A. et al. Infinite depth capture, threading and sequencing of single DNA molecules with a dual nanopore system. ACS Nano 1415566–15576 (2020).

    Google Scholar article

  • Zhang, Y. et al. Novel single-molecule DNA detection using a two-pore device. Little 141801890 (2018).

    Google Scholar article

  • Liu, X., Zhang, Y., Nagel, R., Reisner, W. & Dunbar, WB Tug of DNA control in a double nanopore device. Little 151901704 (2019).

    Google Scholar article

  • Liu, X. et al. DNA dental floss in a double nanopore device. Little 161905379 (2020).

    CAS Google Scholar Article

  • Choi, J. et al. Label-free identification of single mononucleotides by nanoscale electrophoresis. Little 172102567 (2021).

    CAS Google Scholar Article

  • Yeh, J.-W., Taloni, A., Chen, Y.-L. & Chow, C.-F. Entropy-driven single molecule tug of war at micro-nanofluidic interfaces. 121597-1602 (2012).

  • Sakaue, T. Non-equilibrium dynamics of polymer translocation and straightening. Phys. Rev. E 76(2007).

  • Ikonen, T., Bhattacharya, A., Ala-Nissila, T. & Sung, W. Influence of non-universal effects on dynamic scaling in driven polymer translocation. J. Chem. Phys. 137085101 (2012).

    ADS CAS Article Google Scholar

  • Adhikari, R. & Bhattacharya, A. Driven translocation of a semi-flexible chain through a nanopore: a simulation study of two-dimensional Brownian dynamics. J. Chem. Phys. 138204909 (2013).

    Article on Google Scholar Ads

  • Bell, NAW, Chen, K., Ghosal, S., Ricci, M. & Keyser, UF Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Common. 8380 (2017).

    Article on Google Scholar Ads

  • Chen, K. et al. Dynamics of entrained polymer transport through a nanopore. Nat. Phys. 171043-1049 (2021).

    CAS Google Scholar Article

  • Bhattacharya, A. & Seth, S. Tug of war in a double nanopore system. Phys. Rev. E 101(2020).

  • Seth, S. & Bhattacharya, A. Polymer escapes through a three-dimensional double nanopore system. J. Chem. Phys. 153104901 (2020).

    ADS CAS Article Google Scholar

  • Seth, S. & Bhattacharya, A. DNA barcoding using a double nanopore system. Science. representing 119799 (2021).

    ADS CAS Article Google Scholar

  • Seth, S. & Bhattacharya, A. DNA barcoding by flossing through a cylindrical RSC nanopore. Advances 1120781–20787 (2021).

    Google Scholar CAS Announcements

  • Seth, S. & Bhattacharya, A. (unpublished).

  • Saito, T. & Sakaue, T. Processing time distribution of entrained polymer transport. Phys. Rev. E 85061803 (2012).

    Article on Google Scholar Ads

  • de Haan, HW, Sean, D. & Slater, GW Using a Peclet number for DNA translocation through a nanopore to tune coarse-grained simulations to experimental conditions. Phys. Rev. E 91022601 (2015).

    Article on Google Scholar Ads

  • McMullen, A., de Haan, HW, Tang, JX & Stein, D. Rigid filamentous virus translocations through solid-state nanopores. Nat. Common. 5061803 (2014).

    Google Scholar article

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. J. Molec. Chart 1433–38 (1996).

    CAS Google Scholar Article

  • Share.

    Comments are closed.