A device-independent quantum key distribution system for remote users

0
  • Mayers, D. and Yao, A. Quantum cryptography with imperfect apparatus. In proc. 39th Annual Fundamentals of Computing Symposium 503–509 (IEEE, 1998).

  • Acn, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98230501 (2007).

    Google Scholar Article Announcements

  • Pironio, S. Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11045021 (2009).

    Google Scholar Article Announcements

  • Barrett, J., Hardy, L. & Kent, A. Not signaling and quantum key distribution. Phys. Rev. Lett. 95010503 (2005).

    Google Scholar Article Announcements

  • Reichardt, BW, Unger, F. & Vazirani, U. Classical control of quantum systems. Nature 496456–460 (2013).

    CAS Article ADS Google Scholar

  • Lim, CCW, Portmann, C., Tomamichel, M., Renner, R. & Gisin, N. Device independent quantum key distribution with local Bell test. Phys. Rev. X 3031006 (2013).

    CAS Google Scholar

  • Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113140501 (2014).

    Google Scholar Article Announcements

  • Miller, CA & Shi, Y. Robust protocols for securely extending randomness and distributing keys using untrusted quantum devices. J.ACM 631–63 (2016).

    MathSciNet ArticleGoogle Scholar

  • Arnon-Friedman, R. et al. Practical, device-independent quantum cryptography via entropy accumulation. Nat. Common. 9459 (2018).

    Google Scholar Article Announcements

  • Bell, JS On the paradox of Einstein Podolsky Rosen. Phys. Phys. Fizik. 1195–200 (1965).

    MathSciNet ArticleGoogle Scholar

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. mod. Phys. 86419–478 (2014).

    Google Scholar Article Announcements

  • Scarani, V. Non-locality of Bell (Oxford Univ. Press, 2019).

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. mod. Phys. 92025002 (2020).

    MathSciNet CAS Article Google Scholar Announcements

  • Rosenfeld, W. et al. Event-ready Bell test using entangled atoms simultaneously closing sensing and locality faults. Phys. Rev. Lett. 119010402 (2017).

    Google Scholar Article Announcements

  • Schwonnek, R. et al. Device independent quantum key distribution with a random key basis. Nat. Common. 122880 (2021).

    CAS Article ADS Google Scholar

  • Bennett, CH & Brassard, G. Quantum Cryptography: Public Key Distribution and Lottery. Theor. Calculation. Science. 5607–11 (2014).

    MathSciNet ArticleGoogle Scholar

  • Ekert, AK Quantum Cryptography Based on Bell’s Theorem. Phys. Rev. Lett. 67661663 (1991).

    MathSciNet ArticleGoogle Scholar

  • Scarani, V. et al. The security of practical distribution of quantum keys. Rev. mod. Phys. 811301–1350 (2009).

    Google Scholar Article Announcements

  • Hensen, B. et al. Violation of Bell’s inequality with no escape using electron spins 1.3 kilometers apart. Nature 526682–686 (2015).

    CAS Article ADS Google Scholar

  • Giustina, M. et al. Significant flawless test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115250401 (2015).

    Google Scholar Article Announcements

  • Shalm, LK et al. Solid, no-loophole test of local realism. Phys. Rev. Lett. 115250402 (2015).

    Google Scholar Article Announcements

  • Murta, G. et al. Towards a realization of device-independent quantum key distribution. Quantum science. Technology. 4035011 (2019).

    Google Scholar Article Announcements

  • Ho, M. et al. The noisy preprocessing facilitates a photonic realization of the device-independent quantum key distribution. Phys. Rev. Lett. 124230502 (2020).

    CAS Article ADS Google Scholar

  • Xu, F., Zhang, Y.-Z., Zhang, Q. & Pan, J.-W. Device-independent quantum key distribution with random post-selection. Phys. Rev. Lett. 128110506 (2022).

    MathSciNet CAS Article Google Scholar Announcements

  • Nadlinger, DP et al. Experimental distribution of quantum key certified by Bell’s theorem. Nature https://doi.org/10.1038/s41586-022-04941-5 (2002).

  • Liu, W.-Z. et al. Photonic verification of device-independent quantum key distribution against collective attacks. Preprint at https://arxiv.org/abs/2110.01480 (2021).

  • Arnon-Friedman, R., Renner, R. & Vidick, T. Simple and strict device-independent security proofs. SIAM J. Comput. 48181–225 (2019).

    MathSciNet ArticleGoogle Scholar

  • Clauser, JF et al. Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23880884 (1969).

    Google Scholar Article Announcements

  • Renner, R. Security of quantum key distribution. Int. J. Quantum Inf. 61–127 (2008).

    Google Scholar article

  • Tan, EYZ et al. Improved DIQKD protocols with finite size analysis. Preprint at https://arxiv.org/abs/2012.08714 (2020).

  • Hofmann, J. et al. Announced entanglement between widely separated atoms. Science 33772–75 (2012).

    CAS Article ADS Google Scholar

  • van Leent, T. et al. Long-range distribution of atom-photon entanglement at the telecommunications wavelength. Phys. Rev. Lett. 124010510 (2020).

    Google Scholar article

  • Fürst, M. High-speed optical quantum random number generation. Opt. Express 181302913037 (2010).

    Google Scholar Article Announcements

  • Braunstein, SL & Pirandola, S. Quantum key distribution without side channel. Phys. Rev. Lett. 108130502 (2012).

    Google Scholar Article Announcements

  • van Leent, T. et al. Tangle of isolated atoms on 33 km of telecom fiber. Nature https://doi.org/10.1038/s41586-022-04764-4 (2022).

  • Portmann, C. & Renner, R. Security in Quantum Cryptography. Preprint at https://arxiv.org/abs/2102.00021 (2021).

  • Endres, M. et al. Atom-by-atom assembly of flawless one-dimensional cold atom lattices. Science 3541024-1027 (2016).

    CAS Article ADS Google Scholar

  • Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of faultless arbitrary two-dimensional atomic lattices. Science 3541021-1023 (2016).

    CAS Article ADS Google Scholar

  • Ohl de Mello, D. et al. Flawless assembly of 2D clusters of over 100 single-atom quantum systems. Phys. Rev. Lett. 122203601 (2019).

    CAS Article ADS Google Scholar

  • Schupp, J. et al. Interface between trapped ion qubits and moving photons with near-optimum efficiency. Quantum PRX 2020331 (2021).

    Google Scholar Article Announcements

  • Volz, J. et al. Observation of the entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96030404 (2006).

    Google Scholar Article Announcements

  • Rosenfeld, W. Experiments with an entangled system of a single atom and a single photon. Doctoral thesis, Ludwig-Maximilians-Universität München (2008).

  • Share.

    Comments are closed.